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Abstract. An exact algebraic solution is presented for the spectrum of the Bose–Hubbard
model for pure systems in the limit of infinite-range hopping and infinite on-site repulsion. This
strongly interacting boson system is shown to exhibit Bose–Einstein condensation into the lowest
unperturbed single-particle state, with a transition temperature which, for any density of bosons, is
always lower than that in the absence of interactions.

1. Introduction

Bose–Einstein condensation has once again become a subject of considerable current interest.
It is most familiar in the case of non-interacting bosons, where below the transition temperature
a macroscopic number of bosons occupy the same single-particle state. It is conceptually
straightforward to also apply the notion of condensation to weakly interacting bosons.
However, in strongly interacting boson systems, where the very idea of a single-particle state
tends to lose its significance, it is far less evident how to interpret physically the phenomenon
of condensation. The hard-sphere Bose gas in three dimensions is an example of a strongly
interacting model which has been carefully studied by Monte Carlo methods [1]. It was found
that the Bose–Einstein condensation persists in the presence of the hard-sphere repulsion, the
interaction producing an increase in the transition temperature at low densities and a decrease
at high densities.

In many fields of physics, exactly solvable models have proved useful in elucidating
the physics of a system and in evaluating the reliability of approximate methods of solution.
Although the assumptions required to make the models solvable generally also make them
rather unrealistic or unphysical, the lessons learned from their study can frequently be taken
over to more realistic contexts. In this spirit, an exactly solvable model of strongly interacting
bosons could be helpful in understanding the nature of Bose–Einstein condensation in strongly
interacting boson systems.

A fair degree of attention has lately been lavished on the Bose–Hubbard model, which is a
simple and convenient representation of a system of interacting bosons [2]. The emphasis has,
naturally, been mainly on the thermodynamic properties of the model and considerable progress
has been made in understanding its phase diagram. It is well known that the model becomes
equivalent to anXXZ Heisenberg model when the on-site repulsion becomes infinite, thus
ensuring that each lattice site is occupied by at most one boson [3]. An exact thermodynamic
solution has been presented in the limit of infinite-range hopping and finite on-site repulsion [4].
When both limits are taken, allowing for infinite-range hopping with infinite on-site repulsion,
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the Bose–Hubbard Hamiltonian turns out to be exactly solvable by algebraic methods. The
complete spectrum, with its associated degeneracies, and even the exact eigenvectors, can be
obtained analytically, as will be shown in section 2. The exact solution can then be used to
study the phenomenon of Bose–Einstein condensation in this not very physical model.

In its most general form, the Bose–Hubbard model is defined by the second quantized
Hamiltonian

Hg =
∑
i

(εi − µ)n̂i − t
∑
〈i,j〉

a
†
i aj +U

∑
i

n̂i (n̂i − 1) (1)

wherei andj are site labels,a†
i andai are boson creation and destruction operators,n̂i = a†

i ai
is the number operator at sitei and the notation〈i, j〉 denotes nearest-neighbour pairs of sites.
Hereεi is an on-site energy which allows for the presence of disorder,µ is the chemical potential
associated with changes in the overall number of bosons,t is the hopping strength between
neighbouring sites (usually taken as positive) andU is the on-site interaction between bosons
(positive for repulsive interactions, negative for attractive interactions). It should be noted that
the HamiltonianHg strictly conserves the total number of bosons. The case of interest here
is obtained by specializingHg by the imposition of the following conditions: (a) no disorder
(the so-called pure case),εi = 0; (b) unlimited hopping,〈i, j〉 → i 6= j ; (c) infinite on-site
repulsion,U →∞. Since the chemical potential term is proportional to the (conserved) total
number of bosons, it amounts solely to a shift in the zero of energy, when a fixed number of
bosons is being considered. It will thus be omitted, (d)µ = 0. The Hamiltonian to be studied
thus becomes

H = −t
∑
i 6=j

a
†
i aj (2)

with the added constraint that each site is at most singly occupied, as a consequence of the
infinite on-site repulsion.

In the specialized form of equation (2), with the sum covering all distinct pairs of sites,
this limit of the Bose–Hubbard model is independent of the dimension of the system and of
the lattice type. In fact, no lattice structure at all is required—it is sufficient for the sites to be
denumerable. It is assumed that there aren bosons distributed amongN sites, with the number
density defined by the filling fractionf = n/N . Since no site can be multiply occupied,
n 6 N and 06 f 6 1. The solution of the model will be derived for fixed, finite values of
the boson numbern and the number of sitesN . For thermodynamic applications, the relevant
limit is n→∞, N →∞ with f constant.

2. Algebraic solution

The model defined by the Hamiltonian (2) can be solved exactly by a method very similar to
that used recently to solve the fermion version of the same limit of the regular Hubbard model
[5]. At each sitei, a pair of states|i0〉 and|ib〉 is defined, where the former represents a vacant
site and the latter a site occupied by a single boson. They have the self-evident property

〈ix|jy〉 = δij δxy (x, y = 0, b; i, j = 1, 2, . . . , N). (3)
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These states can be used to construct at each site the four Hubbard projectors

X
(i)
00 = |i0〉〈i0| (4a)

X
(i)
0b = |i0〉〈ib| (4b)

X
(i)
b0 = |ib〉〈i0| (4c)

X
(i)
bb = |ib〉〈ib|. (4d)

The prohibition of multiple occupancy of the site is implemented by the constraint

X
(i)
00 +X(i)bb = 1. (5)

There are thus only three independent Hubbard operators at each site. The orthogonality
property, equation (3), ensures that they satisfy the commutators

[X(i)bb , X
(j)

b0 ] = δijX(i)b0 (6a)

[X(i)bb , X
(j)

0b ] = −δijX(i)0b (6b)

[X(i)b0 , X
(j)

0b ] = δij (X(i)bb −X(i)00) = δij2
(
X
(i)
bb − 1

2

)
(6c)

where the constraint of equation (5) has been used in equation (6c). As a result, the set of three
global operators

L+ =
∑
i

X
(i)
b0 (7a)

L− =
∑
i

X
(i)
0b (7b)

L0 =
∑
i

(
X
(i)
bb − 1

2

) = n̂−N/2 (7c)

satisfies the algebra ofSU(2),

[L0, L±] = ±L± (8a)

[L+, L−] = 2L0. (8b)

Note the identificationX(i)bb = n̂i and the definition of the total number operatorn̂ =∑i n̂i .
All that remains is to note that the Bose–Hubbard Hamiltonian (2) can be transcribed as

H = −t
∑
i,j

a
†
i aj + t n̂ = −t

∑
i,j

X
(i)
b0X

(j)

0b + t n̂ = −t (L+L− − n̂). (9)

Using the properties ofSU(2), this can be further rewritten in the highly suggestive form

H = −t[ EL2 −N/2(N/2 + 1) + n̂(N − n̂)] (10)

where EL2 is the usual Casimir operator ofSU(2). The eigenstates of this Hamiltonian are
clearly theSU(2) states|`, `z〉, with corresponding eigenvalues

E = −t [`(` + 1)− `2
z −N/2]. (11)

For givenN , this spectrum is symmetric inn about the midpointn = N/2.
It is easily checked that the single-site states|i0〉 and |ib〉 form an ` = 1

2 doublet
of this SU(2)—the former having̀ z = − 1

2 and the latter̀ z = +1
2—so that theN -site

states must be of the form( 1
2)
N . The accessible values of` therefore lie between zero
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andN/2. For a fixed value ofn, the value of`z is fixed atn − N/2, so ` cannot be
less than|n − N/2|. By inspection, the lowest eigenstates will have` = N/2, higher
eigenstates having̀values decreasing in unit steps until the highest eigenstates are attained,
with ` = |n−N/2|.

The degeneracy of the eigenstates is also easily determined by standardSU(2) techniques.
The value of̀ z is determined by the number of bosons on the lattice,`z = n − N/2, so the
number of states of a giveǹz is simply the number of ways of distributingn particles over
N sites, allowing at most one particle per site. There are thus

(
N

n

) = ( N

`z+N/2

)
states of a given

`z. It follows that there are
(

N

`+N/2

) − ( N

`+1+N/2

)
states of giveǹ , each associated with 2` + 1

substates having̀z = −`, . . . , `. The degeneracy of the eigenstate|``z〉 of the Hamiltonian
(2) for a given numbern = `z +N/2 of bosons onN sites is therefore

gN(`) = N !(2` + 1)

(N/2− `)!(N/2 + ` + 1)!
. (12)

To summarize, the exact spectrum of the Hamiltonian (2) forn bosons onN sites is given
by equation (11), with degeneracy given by equation (12), where`z = n − N/2 and` takes
all values fromN/2 down to|`z|, in unit steps.

The same solution may be obtained by a very elegant alternate method, originally
developed to deal with the fermion version of the same model [6]. It is based on the observation
that the Hamiltonian (2) is invariant under all permutations of the site labels. Its eigenstates can
therefore be classified according to the appropriate irreducible representations of the symmetric
group onN objects,SN . These representations are specified by Young diagrams. Since
the present system involves two distinct bosons—occupied sites and vacancies—the relevant
diagrams have at most two rows, with a total ofN boxes. The firstn boxes of the upper
row are labelled as occupied sites, the remaining boxes of the upper row and all boxes of the
lower row as vacancies. The lower row cannot be longer thann boxes, since two vacancies
cannot occupy the same column. By denoting the number of boxes in the upper row as
N/2 + ` and the number in the lower row asN/2− `, each relevant representation can be
labelled by the single quantum number`, which is easily seen to have the same range of
allowed values as in theSU(2) approach. The number of distinct states in the irreducible
representation labelled bỳis found, from standard formulae for the symmetric group, to be
precisely the degeneracy presented in equation (12). The eigenvalues can be found by the
algebraic methods described in [6]. In addition, this method allows the explicit construction
of the eigenstates by application of Young projectors to simple product states, as outlined in
[6].

It is manifestly clear that this combinatoric treatment of the model is particle–hole
symmetric—occupied and vacant states may be exchanged throughout the above discussion.
This is true also of theSU(2) treatment, but there it is less transparent. It is thus sufficient to
restrict detailed discussions of the model to the casen 6 N/2, using particle–hole symmetry
to complete the picture.

3. Comparison of perturbed and unperturbed cases

The Hamiltonian of equation (2), with no constraint on the number of bosons at a site, may be
considered as an unperturbed version of the model solved in the previous section. The strong
repulsive interaction between bosons at the same site enforces the prohibition on multiple
occupancy of a site and produces the perturbed form. It is instructive to compare the solutions
of the perturbed and unperturbed problems.
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The unperturbed system is a pure one-body problem and is easily solved by Fourier
transformation,

a†
α = (1/

√
N)

N∑
k=1

e2π iαk/Na
†
k (13)

wherek = 1, 2, . . . , N labels sites andα = 0, 1, 2, . . . , N − 1 labels unperturbed single-
particle states. The lowest such state, created by the operatora

†
0 =

∑N
i=1 a

†
i , has an energy

−(N − 1)t . All the rest of these states are degenerate at the energyt . The unperturbed
Hamiltonian then takes the form

H0 = −t (Na†
0a0 − n̂) = −t (Nn̂0 − n̂) (14)

with eigenvalues determined solely by the occupation numbersn0 andn. The eigenstates
are defined by the occupation numbers of all unperturbed single-particle states and their
degeneracies are the result of the degeneracy of all but the lowest single-particle state, which
is shifted down byNt from all the others. The unperturbed spectrum, for givenN andn, is a
set of equally spaced states, labelled by the quantum numbern0, of energy

E(0)n0
= −t (Nn0 − n) n0 = n, n− 1, n− 2, . . . ,1, 0 (15)

and degeneracy

g
(0)
N (n0) = (N + n− n0 − 2)!

(n− n0)!(N − 2)!
(16)

the number of distinct ways of distributingn− n0 bosons amongN − 1 single-particle states.
For later applications, it is convenient to relabel the eigenstates and eigenenergies in terms

of ν0 = n− n0, the number of bosons in excited single-particle states. The energies are then

E(0)ν0
= −t (N − 1)n +Ntν0 = E(0)0 +Ntν0 ν0 = 0, 1, 2, . . . , n (17)

with degeneracies

g
(0)
N (ν0) = (N + ν0 − 2)!

ν0!(N − 2)!
. (18)

The ground-state wavefunction is

|9(0)
0 〉 = (1/

√
n!)(a†

0)
n|0〉 (19)

where|0〉 is the boson vacuum, i.e. the empty lattice. This state is non-degenerate,g
(0)
N (0) = 1.

The perturbed spectrum, obtained when the infinite on-site repulsion is implemented by
way of the prohibition on multiple occupancy of any lattice site, is given in the previous section
in terms of theSU(2) quantum number̀. For comparison with the unperturbed spectrum,
and also for further applications, it is convenient to relabel the perturbed results in terms of
the quantum numberν = N/2 − `, which defines the deviation of̀ from its maximum
(ground-state) value. The energies (11) are then

Eν = −tn(N − n) + t (N + 1− ν)ν = E0 + t (N + 1− ν)ν ν = 0, 1, 2, . . . , n (20)

with degeneracies

gN(ν) = N !(N + 1− 2ν)

ν!(N + 1− ν)! . (21)
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Particle–hole symmetry has been exploited to limitn to values less than or equal toN/2, i.e.
the fractional occupancy of the lattice is limited tof 6 1

2. (The results for values12 6 f 6 1
are immediately obtained from the symmetry about half filling.)

The wavefunction of the perturbed ground state can easily be checked to be

|9〉 =
√
(N − n)!
n!N !

∑
{i1i2...in}

a
†
i1
a

†
i2
· · · a†

in
|0〉 (22)

where the sum is over all sets ofn distinct site labels, i.e. no site is occupied more than once
in any term. This state, too, is non-degenerate,gN(0) = 1.

The states of the unperturbed spectrum are equally spaced, with a fixed energy difference
of Nt between any two successive states. The spacing of the perturbed spectrum, however,
gradually decreases with distance from the ground state, the gap between theνth excited state
and its successor being only(N−2ν)t . (The first excited state in the perturbed spectrum is at the
same excitation energy as the first excited unperturbed state.) The degeneracy of corresponding
states—therth excited state in each spectrum, say—is greater in the unperturbed than in the
perturbed spectrum. In fact, the ratio of the degeneracy of a typical excited perturbed state to
that of the corresponding unperturbed state becomes exponentially small for largeN . This is to
be expected, since the effect of the interaction is to exclude otherwise permitted configurations,
and is also reflected in the total number of allowed states, which is(N +n−1)!/n!(N −1)! in
the unperturbed case andN !/n!(N − n)! in the perturbed case. For largeN andn, with fixed
f = n/N , the ratio of the total number of perturbed to the total number of unperturbed states
is
√
(1 +f )/(1− f ) [(1− f )1−f (1 +f )1+f

]−N
, where the quantity in the square brackets is

greater than unity for allf > 0.
The overlap between the ground-state wavefunctions (19) and (22) can be computed by

iteration in the number of bosonsn and is found to be

〈90|9〉 =
√

N !

(N − n)!Nn
. (23)

For largeN andn, with fixedf = n/N , Stirling’s approximation to the factorials gives

〈90|9〉 ∼
[

e−f

(1− f )1−f
]N/2

(24)

which is generally very small, except whenf ' 0. Numerical evaluation of equation (23)
shows that the square of the overlap between the perturbed and unperturbed ground-state
wavefunctions falls rapidly from its value of unity atf = 0 to zero, the width at half maximum
(i.e. the value off at which the squared overlap is 0.5) being well represented as 1.18/

√
N .

Finally, the average number of bosons in the lowest unperturbed single-particle state is
given by the expectation value of the number operatorn̂0. Because of the special form of the
Hamiltonian (14), this is very simply related to the expectation value of the Hamiltonian. In any
energy eigenstate it is quickly written down. In the unperturbed ground state it takes the value
〈n̂0〉 = n, as it must, while in the perturbed ground state it takes the value〈n̂0〉 = n−n(n−1)/N .
In the limit of largeN andn with fixedf , the average fraction of bosons in the lowest single-
particle state is unity in the unperturbed case and 1−f in the perturbed case, in the ground state
of the system. Although the infinite on-site repulsion introduces strong correlations between
the particles, the lowest unperturbed single-particle state remains macroscopically occupied
in the ground state of the perturbed system, though the occupancy is reduced by the filling
fractionf .



Bose–Einstein condensation of strongly interacting bosons 737

4. Thermodynamics

The thermodynamic limit of the model is defined byN →∞, n→∞, f = n/N fixed. As
will be clear from a glance at equations (17) and (20), in order for this limit to be sensible
(extensive energies, for instance) it is necessary to rescale the hopping strengtht . The rescaled
hopping strength is defined by

κ = Nt. (25)

It is also convenient to shift the zero of energy so that the system ground state lies at zero
energy. This simply requires settingE(0)0 → 0 in equation (17) andE0→ 0 in equation (20).
Finally, sinceκ is now the only parameter of the model with dimensions of energy, it sets
the energy scale of all results and can conventionally be taken as the unit of energy,κ = 1.
Similarly, temperature will be measured on an energy scale by setting Boltzmann’s constant
kB = 1, so the dimensionless temperatureT should be interpreted askBT /κ.

The perturbed form of the model cannot be dealt with in terms of single-particle degrees of
freedom, because of the strong correlations induced by the prohibition of multiple occupancy
of any site. It is therefore not useful to work in terms of the grand canonical ensemble, so that
a canonical ensemble treatment is preferred.

The partition function for the perturbed system is

Z =
n∑
ν=0

gN(ν) e−Eν/T =
n∑
ν=0

N !(N + 1− 2ν)

ν!(N + 1− ν)! e−ν[1−(ν−1)/N ]/T . (26)

By applying Stirling’s approximation to the factorials, a typical term in the sum can be written,
for largenandN , as

[
e−φ(1−φ)/T /φφ(1− φ)1−φ]N (1−2φ)/

[
(1− φ)√2πNφ(1− φ)], where

φ = ν/N and 06 φ 6 f < 1
2. (Recall that fractional occupancies greater thanf = 1

2 are
treated by particle–hole symmetry.) The ratio of the(ν+1)th term to its predecessor is similarly
approximated byρ = e−(1−2φ)/T (1− φ)/φ. This ratio is generally larger than unity for small
φ, falling asφ increases, so the terms of the sum typically increase steadily, untilρ = 1. The
partition function is thus dominated by the largest term, in whichφ takes the valueφ(m) for
which ρ = 1. For a given temperatureT , this dominantφ(m) is determined implicitly as the
solution of the equation

e−(1−2φ)/T = φ/(1− φ). (27)

Since the sum overν is limited by n, the quantityφ is limited by f and there is a critical
temperature at whichφ(m) = f . Above this temperature, the partition function is always
dominated by the last term in the sum. It may be concluded that the perturbed system has a
critical transition temperature, given by

Tc = 1− 2f

ln(1− f )− ln f
. (28)

The free energy is given byF = −T lnZ. Upon approximatingZ by its dominant term
(again recalling thatN is very large), it is found thatF = N [(φ(m))2 + T ln(1 − φ(m))]
below Tc, with φ(m) given by the solution of equation (27), whileF = N{f (1 − f ) +
T [f ln f +(1−f ) ln(1−f )]} aboveTc. With the usual identificationU = −T 2(∂/∂T )(F/T ),
it is easily shown that the internal energy isU = Nφ(m)(1 − φ(m)) below Tc andU =
Nf (1− f ) aboveTc. This is continuous, but with a discontinuous derivative, at the critical
temperature. The entropy of the system can also be computed, from the standard expression
S = −(∂F/∂T ). It is found to beS = −N [φ(m) ln φ(m) + (1− φ(m)) ln(1− φ(m))] belowTc
andS = −N [f ln f + (1− f ) ln(1− f )] aboveTc.
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A similar treatment may be given for the unperturbed system. The canonical partition
function for the unperturbed system is given by

Z(0) =
n∑

ν0=0

g
(0)
N (ν0) e−E

(0)
ν0
/T =

n∑
ν0=0

(N + ν0 − 2)!

ν0!(N − 2)!
e−ν0/T . (29)

Again applying Stirling’s approximation to the factorials, a typical term in the sum can
be written, for largen and N , as

√
(1 +φ0)/2πNφ0 [e−φ0/T (1 + φ0)

1+φ0/φ
φ0
0 ]N , where

φ0 = ν0/N . The ratio of the(ν0 + 1)th term to its predecessor is similarly approximated
by ρ0 = e−φ0/T (1 + φ0)/φ0. This ratio is generally larger than unity for smallφ0, falling as
φ0 increases, so the terms of the sum typically increase steadily, untilρ0 = 1. The partition
function is thus dominated by the largest term, for whichρ(m)0 = 1 or φ(m)0 = 1/(e1/T − 1).
However,φ0 can never exceedf , since the upper limit on the sum overν0 is n, so there exists
a critical temperature at which 1/(e1/T (0)c − 1) = f , above which the partition function is
dominated by the last term in the sum. The transition occurs at the critical temperatureT (0)c

for which

e−1/T (0)c = f/(1 +f ) H⇒ T (0)c = 1/ [ln(1 +f )− ln f ]. (30)

The free energy of the unperturbed system is given byF (0) = −T lnZ(0). Upon
approximatingZ(0) by its dominant term (again recalling thatN is very large), it is found
thatF (0) = NT ln(1− e−1/T ) belowT (0)c , whileF (0) = n−NT [(1 +f ) ln(1 +f )− f ln f ]
aboveT (0)c . The internal energy isU(0) = N/(e1/T − 1) belowT (0)c andU(0) = n aboveT (0)c .
The entropy of the system is found to beS(0) = N/[T (e1/T − 1)] − N ln(1− e−1/T ) below
T (0)c andS(0) = N [(1 +f ) ln(1 +f )− f ln f ] aboveT (0)c .

It may be concluded that the perturbed system shows the same kind of transition as does
the unperturbed system, though at a different critical temperature. Both the perturbed and
the unperturbed system may also be treated in the grand canonical ensemble. Although the
treatment differs in detail from the above canonical treatment, the results are exactly the same
in both approaches.

Both the perturbed and unperturbed systems show a transition at critical temperatures given
by equations (28) and (30). The value of the critical temperature depends on the fractional
occupancyf = n/N of the lattice sites by the bosons, but for all values off in the range
0< f < 1

2 common to both systems, the critical temperature is lower in the perturbed than in
the unperturbed system. The strong repulsion between bosons at the same site requires that the
temperature be lowered in order to precipitate the transition. The ratioTc/T

(0)
c < 1 for allf in

the common range and decreases with increasingf , though it tends to unity asf approaches
zero.

The nature of the transition is clarified by considering the average occupancy of the
unperturbed single-particle ground state at various temperatures,n0(T ). Since the Hamiltonian
(14) is expressed directly in terms of the number operatorn̂0, this quantity can be easily
transcribed from the average internal energy. Because of the rescaling oft shown in
equation (25) and the shifts in zero of energy described immediately below that equation,
the results forU(0) andU in the two previous subsections imply that, in the unperturbed

system,n(0)0 (T )/n = 1− 1/f (e1/T − 1) for T < T (0)c andn(0)0 (T )/n = 0 for T > T (0)c ; while
in the perturbed system,n0(T )/n = 1− f − φ(m)(1− φ(m))/f for T < Tc andn0(T )/n = 0
for T > Tc. For both the perturbed and the unperturbed systems, the relative occupancy of
the unperturbed single-particle ground state is essentially constant for low temperatures, at
the system ground state value (unity in the unperturbed system and 1− f in the perturbed
system, see the end of section 3). As the temperature increases, this relative occupancy begins
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to fall steadily, going to zero at and beyond the critical temperature. It is thus a reasonable
candidate for an order parameter in this transition, which can be interpreted as a Bose–Einstein
condensation. This is true even though the perturbed system exhibits strong correlations among
the particles, which are forbidden to multiply occupy any site. The order parameter goes to
zero at a lower temperature and with a steeper slope in the perturbed system than in the
unperturbed system. (The slope at which zero is approached at the critical temperature is
−(1 +f ) ln2[f/(1 +f )] in the unperturbed system and

−(1− f ) ln2[f/(1− f )]
1 + 2f (1− f ) ln[f/(1− f )]/(1− 2f )

in the perturbed system.) Since this slope is finite in both cases, both systems have a critical
exponent of unity.

It is interesting to note that a hard-sphere Bose gas in three dimensions shows rather
different behaviour from that obtained here. The current model is essentially a hard-sphere
Bose lattice gas, but the unlimited hopping, which makes the results independent of dimensions
and of lattice type, has a significant effect on the critical temperature for Bose–Einstein
condensation. For the three-dimensional hard-sphere Bose gas it was found [1] that the
repulsive interactions increase the critical temperature at low densities, but decrease it at high
densities. In the present model, the infinite on-site repulsion reduces the critical temperature
at all fractional occupancies of the lattice.

5. Summary and conclusions

It has been shown that the Bose–Hubbard model, when specialized to the limit of infinite-range
hopping and infinite on-site repulsion, can be exactly and analytically solved in terms of an
SU(2) algebraic structure. The solution is independent of the dimension of the system and of
the lattice type, and indeed holds even in the absence of any ordered lattice, as long as the sites
are denumerable. For a fixed numbern of bosons on a fixed numberN of sites, the complete
spectrum of the model has been given, together with the degeneracy of the levels, and it has
been indicated how the eigenstates may be determined.

In the absence of on-site repulsion, but still with hopping of unlimited range,
an unperturbed form of the model is obtained and is exactly diagonalized by Fourier
transformation. Both the perturbed and unperturbed forms of the model show Bose–Einstein
condensation into the lowest unperturbed single-particle state, despite the strong correlations
between particles in the perturbed system. The critical temperature for condensation is always
lowered by the repulsive on-site interactions. The fractional occupancy of the single-particle
ground state,n0(T )/n, plays the role of an order parameter, vanishing at and beyond the critical
temperature. Its value at zero temperature is unity in the unperturbed case, 1− n/N in the
perturbed case, and it vanishes at the critical temperature with a finite slope in both cases, this
slope being steeper in the perturbed case.

It may be concluded that this very particular solvable model continues to exhibit Bose–
Einstein condensation even in the presence of very strong interactions between the particles,
though these interactions do shift the transition to lower temperature, for all fractional
occupancies of the lattice. This latter effect is different from what is found in three-dimensional
hard-sphere Bose gases.
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